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1. Background and motivation
Why do we need to know battery state of health (SOH)? 

Battery Ageing

SOH = 80%SOH = 100%

Battery Replacement

SOH =
Qt

Q0
× 100%



 Model Driven
 Data Driven

 Empirical/Semi-empirical model
 Machine learning
 ….
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1. Background and motivation

Capacity 
Diagnosis

On-line

Off-line
 Capacity test: fully charge and then 

discharge 
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Data 
collection

Data pre-
processing

Predictive 
model 

development

Integrate 
analytics with 

systems

• Historical

data base

• Data

collection

from sensors

(e.g. 𝐼, 𝑉, 𝑇)

• Reducing noise

in data

• Data reduction/

transformation

• Feature

extraction

• Model creation

• Parameter

tuning/

optimization

• Model validation

• Embedded in 
BMS

Step 1

2. Data & Model

Machine Learning for SOH estimation
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Step 1.
Data collection 

2. Data & Model
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Capacity fade result :

2. Data & Model

• Different cycling temperature: 35, 45°C
• Varied cycling depth: 100%, 80%, 50% 
• Different cycling mid-SOC: 50%, 65%

35°C, 100% DOD, 50% Mid-SOC

35°C, 80% DOD, 50% Mid-SOC

35°C, 50% DOD, 50% Mid-SOC

35°C, 50% DOD, 65% Mid-SOC

45°C, 100% DOD, 50% Mid-SOC

45°C, 80% DOD, 50% Mid-SOC
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Access and 
explore data

Data pre-
processing

Predictive 
model 

development

Integrate 
analytics with 

systems

• Historical

data base

• Data

collection

from sensors

(e.g. 𝐼, 𝑉, 𝑇)

• Reducing noise

in data

• Data reduction/

transformation

• Feature

extraction

• Model creation

• Parameter

tuning/

optimization

• Model validation

• Embedded in 
BMS

Step 2

2. Data & Model
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Step 2. feature selection 

2. Data & Model
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Step 3

2. Data & Model

Access and 
explore data

Data pre-
processing

Predictive 
model 

development

Integrate 
analytics with 

systems

• Historical

data base

• Data

collection

from sensors

(e.g. 𝐼, 𝑉, 𝑇)

• Reducing noise

in data

• Data reduction/

transformation

• Feature

extraction

• Model creation

• Parameter

tuning/

optimization

• Model validation

• Embedded in 
BMS
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Step 3. Algorithm selection
Bagging: Randomly sampled 

2. Data & Model

Random Forest Regression: 
An ensembled method 



10

Generalization error converge after 
a certain point

ntree: the number of trees 
mtry: the number of random 
features for each split in the forest 
to build (default number)

Offline parameter tuning 

2. Data & Model

𝐿𝑜𝑠𝑠 = 𝑀𝑆𝐸 =෍(𝑦𝑖 − 𝑦𝑖
𝑝
)2

𝑦𝑖: 𝑖th target value

𝑦𝑖
𝑝

: 𝑖th prediction
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Leave n-out cross validation 

2. Data & Model



35°C, 100% DOD, 50% Mid-SOC

35°C, 80% DOD, 50% Mid-SOC

35°C, 50% DOD, 50% Mid-SOC

35°C, 50% DOD, 65% Mid-SOC

45°C, 100% DOD, 50% Mid-SOC

45°C, 80% DOD, 50% Mid-SOC
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2. Data & Model

Experimental Results Estimation Results
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3. Results & Conclusion

Group 1 Group 2 Group 3

Group 4 Group 5 Group 6
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3. Results & Conclusion

Good 
Not OK 

BAD
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3. Results & Conclusion

Setting 1
Setting 2

Setting 3

Incremental Capacity 
analysis

IC =
𝑑𝑄

𝑑𝑉
≈

∆𝑄

∆𝑉
=
𝑄𝑡 − 𝑄𝑡−1
𝑉𝑡 − 𝑉𝑡−1
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3. Results & Conclusion

Limits:
• Only charging voltage-capacity curves at 25°C are used 

for input feature selection
• Require constant current rate
• Low charging C-rate (C/3)

Conclusion
• A online capacity estimation method with random forest 

regression was proposed
• Low effort for input feature collection
• IC analysis was used for input feature selection 
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Outlook
• Dynamic using conditions 
• Battery pack
• Health prediction
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Thank you!

Yi Li
y.li82@lancaster.ac.uk

Research Associate 
Energy Lancaster
Lancaster University
https://www.lancaster.ac.uk/energy-lancaster/
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Tuesday , 3rd

Shahin Nikman - Parallel Session 1b | 3 pm 

Wed, 4th - Parallel Session 5a | 4pm 
Michael Mercer

Beatrice Wolff

Robert Burrell 


